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FOREWORD 

This final technical report in two volumes covers the work performed under Con­
tract AF 33(615)-3190 from 1 December 1964 through 8 July 1967. Volume I covers the 
results of the experimental work in hydrostatic extrusion and Volume II contains the 
work relative to design and construction of high-pressure hydrostatic extrusion con­
tainers. The manuscript was released by the authors op 29 September 1967 for publica­
tion as an AFML technical report. 

This contract with Battelle Memorial Institute of Columbus, Ohio, was initiated 
under Manufacturing Methods Project No. 8-198, "Development of the Manufacturing 
Capabilities of the Hydrostatic-Extrusion Process ". It was administered under the 
technical direction of Mr. Charles S. Cook until September 1965 and then by 
Mr. Gerald A. Gege1 of the Metallurgical Processing Branch ,{MArB), Manufacturing 
Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force 
Base, Ohio. 

The program was conducted at Battelle with the prime responsibility assigned to 
the Metalworking Research Division and with Mr. R. J. Fiorentino, Associate Chief, 
as Project Engineer. Others contributing to the program were Mr. B. D. Richardson, 
Research Metallurgical Engineer, Mr. G. E. Meyer, Research Metallurgical Engineer, 
Mr. F. W. Fawn, Technician, Mr. A. M. Sabroff, Division Chief, and Mr. F. W. 
Boulger, Senior Technical Advisor. The late Mr. W. R. Hansen, Research Metallur­
gist, made a significant contribution to the program up to the time of his death in 
August, 1966. Mr. R. L. Jentgen, Associate Chief in the Structural Physics Division, 
assisted in the fluid and lubrication studies of the program. Dr. J. C. Gerdeen, 
Senior Research Mechanical Engineer in the Advanced Solid Mechanics Division, con­
ducted the stress analysis for the high-pressure-container-design study. Mr. E. C. 
Rodabaugh, Mr. M. Vagins, Senior Mechanical Engineers, and Mr. T. J. Atterbury, 
Chief of the Applied Solid Mechanics Division, also assisted in this study. Mr. R. E. 
Mesloh, Research Mechanical Engineer of the Applied Solid Mechanics Division, de­
signed an instrument for measuring fluid pressure at elevated temperatures. Data from 
which this report has been prepared are contained in Battelle Laboratory Record Books 
Nos. 21799, 21990, 23065, 23287, 23585, 23791, 23836, and 24446. 

This project has been accomplished as a part of the Air Force Manufacturing 
Methods program, the primary object of which is to develop, on a timely basis, manu­
facturing processes, techniques, and equipment for use in economical production of 
USAF materials and components. The program encompasses the following technical 
areas: 

Metallurgy 
Chemical 
Fabrication 
Electronics 

- Rolling, Forging, Extruding, Cas ting, Fiber, Powder. 
Propellant, Coating, Ceramic, Graphite, Nonmetallics. 
Forming, Material Removal, ,Joining, Components. 
Solid State, Materials and Special Techniques, Thermionics. 

Suggestions concerning additional Manufacturing Metlwds development required on 
this or other subjects will be appreciated. 

Jj4U~ 
H. A. Q'~N;~;;" ~~ief 
Metallurgical Processing Branch 
Manufacturing Technology Division 
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ABST~ACT 

The purpose of the program was to develop the manufacturing capabilities of the 
hydrostatic-extrusion process. Specific applications studied were fabrication of wire, 
tubing, and shapes from relatively difficult-to-work materials such as refractory-metal 
alloys, high- strength steels, aluminum alloys, titanium alloys, beryllium, and other 
selected materials. Phase I was concerned with process optimization and Phase II 
with direct proces s application. 

As part of Phase I, the effects of critical process variables on pressure require­
ments and product quality were studied for wrought and powder materials ranging from 
relatively high- strength easy to work materials such as aluminum alloys and steels to 
the relatively more difficult-to-work materials such as Ti-6Al-4V titanium alloy and 
superalloys. With these materials, fluids and lubricants tended to be the factor 
controlling pressure requirements and product quality. With almost every material 
extruded the limit in extrusion ratio was set by the design pressure capacity of the 
container except for the aluminum alloys where the limit was set more by the efficiency 
of the lubrication system. 

In the hydrostatic extrusion of brittle materials, die design proved to be the most 
significant factor controlling the production of sound, good quality extrusions. New 
die-design concepts have opened up new fields for the application of hydrostatic extru­
sion to bri.ttle materials. 

Except for the aluminum alloys, the hydrostatic extrudability of the above range 
of materials was also investigated at 400 and 500 F. Again, fluids and lubricants were 
developed to enable the production of good quality extrusions. Of particular interest 
here was the wide range of lubricants that operated successfully at this temperature 
leve 1. 

As part of Phase II of the program, tubing, mill shapes and wire were produced 
from a variety of materials. For tubing, the floating-mandrel arrangement enabled 
higher extrusion- ratio capabilities than those for solid rounds. An analysis of the 
beneficial effects of the floating-mandrel arrangement is given. 

T-sections were extruded from round billets and were re-extruded into smaller 
T-sections. Materials evaluated here were 7075-0 aluminum, AISI 4340 steel, 
Ti- 6Al- 4V alloy and Cb752 columbium alloy. The problem of sealing against leaks 
between the T- billet and die in the re-extrusion of shapes was overcome to some 
extent following the evaluation of several methods of sealing. 

In tne reduction of T-sections and wire, a technique of hydrostatic-extrusion 
drawing developed at Battelle was used. This method, called the HYDRAW technique, 
was used to reduce \ :re of Ti- 6Al- 4V alloy, beryllium, and TZM molybdenum alloy 
wire at single pass reductions of up to 60 percent. That reduction appeared to be by 
no means the limit of single-pass reduction achievable with these materials. 
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During the experimental program, a study of high-pressure container designs 
was made. Several design concepts that were analyzed are presented in detail in this 
report. The most promising concept for containing fluid pressures up to 450,000 psi 
in large- bore containers was that of using pressurized-fluid support as in the ring­
fluid- ring design. This and other designs were analyzed on the basis of fatigue­
strength criterion, which is believed to be a new and more sound basis for the design 
of high-pressure containers. 

This document is subject to special export 
controls and each transmittal to foreign 
governments or foreign nationals may be 
made only with prior approval of the 
Manufacturing Technology Division 
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XXI 

INTRODUCTION 

The purpose of this program was to develop the manufacturing capabilities of the 
hydrostatic-extrusion process. The program was divided into two phases with the follow­
ing general objectives: 

Phase 1. Process-Development Studies 

Part 1. (a) To study the effect of critical process variables on pres­
sure requirements and surface quality in hydrostatic extru­
sion of AISI 4340 steel , Ti-bAl-4V titanium alloy, and 7075 
aluminum alloy. 

(b) To correlate all available hydrostatic-extrusion-pressure 
data with material properties wherever pos sible in order to 
assist direction of the experimental effort and maximize the 
information developed on the present program. 

Part 2. To explore the hydrostatic extrudability of TZM molybdenum 
alloy, beryllium, A28b iron-base superalloy, Alloy 718 nickel­
base superalloy, powder compacts, and other selected 
materials. 

Part 3. To conduct a design study for high-temperature, high-pres sure 
hydrostatic-extrusion tooling based on (1) estimated pressure 
requirements for high-ratio extrusion of materials of interest 
to the Air Force, (2) latest high-pressure-vessel technology, 
and (3) latest tooling materials available. 

Part 4. To conduct a process economic study on the construction, instal­
lation, and operation of equipment with the same operational 
and size requirements as the tooling developed in the previous 
program on Contract No . AF 33(600)-43328. 

Phase II. Process-Application Studies 

Part 1. To evaluate the application of the hydrostatic-extrusion process 
for sizing and finishing conventionally hot-extruded (or rolled) 
structural shapes by various combinations of drawing and ex­
truding. Primary emphasis was to be on AISI 4340 steel, 
although some effort was to be devoted to Ti-bAl-4V, 7075-0 
aluminum, and selected refractory metals. 

Part 2. To determine the feasibility of producing wire and filaments 
from beryllium, TZM molybdenum alloy, and Ti-bAl-4V 
titanium alloy by combinations of hydrostatic extrusion and 
drawing. 

149 



I 

Part 3. To develop tooling and define proces s parameters necessary for 
the reduction of tube blanks to finish tubing from AISI 4340 steel, 
7075-0 aluminum, and Ti-6Al-4V titanium. 

The results of the experimental and analytical work connected with Phases I and II were 
covered in Interim Engineering Progress Reports I through IX. 

This, the Final Technical Report in two volumes, contains the results of the pro­
gram in their entirety. Volume I contains Section 1, "A Study of the Critical Process 
Variables in the Hydrostatic Extrusion of Several Materials " and Section 2, "Production 
Aspects of Hydrostatic Extrusion". Volume II contains Section 3, I1Analysis of Several 
High-Pressure Container-Design Concept s " and Section 4, "Hydrostatic-Extrusion Con­
tainers Designed and Constructed in the Program", The experimental program started 
December 1, 1964, and was completed on July 8, 1967, 
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XXII 

SUMMARY OF VOLUME II 

The experimental work conducted in this program has taken the technology of the 
hydrostatic-extrusion process from the experimental stage to the threshold of its applica­
tion in a production operation . Co:mm.ercial exploitation of the process is possible with­
out any further major experimentation and it is believed that this report gives the guide­
lines that will enable these steps to be taken immediately. What remains now is the 
complete design of production hydrostatic-extrusion equipment that will be competitive 
with conventional-extrusion equipment. At the time of this writing, a program is 
underway at Battelle-Columbus Laboratories in which such equipment is being designed. 
The program, "Design Study of Production Press for Ultrahigh-pressure Hydrostatic­
Extrusion Equipment", is sponsored by the Metallurgical Processing Branch, Manu­
facturing Technology Division at Wright-Patterson Air Force Base, Ohio, on Contract 
No. AF 33(61S)-67-C-1434. 

One of the most important aspects of the aforementioned design study is the design 
of the high-pressure container. Section 3 of this report contains a thorough analysis of 
several concepts of high-pressure containers. This analysis will be drawn on heavily in 
the design study. Section 4 describes the development of three containers designed and 
constructed in this program . 

Both Sections 3 and 4 are complete in themselves and each contains its own 
summary. 
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